
441 

 

HL HL HL HL                                          ISSN:2231 – 3087(print) 

http://heteroletters.org                                    ISSN: 2230 – 9632 (Online) 

                                                   Coden HLEEAI 

                                     Vol. 4: (3), 2014, 441-452 

 

 

MY SILVER JUBILEE WITH BETA LACTAMS 

 

 

Bimal K. Banik 

 

Department of Chemistry, The University of Texas-Pan American, 1201 West University Drive, 

Edinburg, Texas 78539, USA; bimalbanik10@gmail.com 

 

 

Abstract: 

In this perspective, our research on beta lactams for the past twenty five years is focused.  

 

Introduction:  

Research can be compared to our life. Nobody knows what will happen tomorrow. Like our life, 

research does not follow a definite or selective path. It is hard to believe for me that I have 

already spent 25 years of my research life and most of it on beta lactam research. I never knew 

this will happen to me, but this has happened. In 1989, I was working as a postdoctoral fellow in 

Professor R. G. Salomon’s group at the Case Western Reserve University, Cleveland, Ohio, 

USA.  I was told by one of my colleagues that postdoctoral fellows may not get renewal of the 

appointment due to the non-availability of grants. Consequently, knowing the uncertainty, Iwas 

in puzzle. I remembered I went to the library at the same day and started to open journals 

randomly. All of a sudden, I came across of a paper that describes the synthesis of 3-oxo-beta 

lactams by Professors A. K. Bose and M. S. Manhas of Stevens Institute of Technology, New 

Jersey and their group members. I became highly curious to know more about their work and 

found numerous publications in this field. Because of the Bayer Strain theory, I had the 

impression that 4-membered cyclic compounds are difficult to make, but become pleased to read 

many excellent papers on beta lactams. I was nervous, but called Professor Bose at Stevens for a 

postdoctoral fellowship. Professor Bose asked me a few questions on my scientific background. 

For example, he wanted to know the name of my Ph. D. thesis supervisor, type of research that I 

conducted, number of publications that I had and the reasons for my interest in beta lactam 

science. The answers of all of these questions were easy to me. I knew that beta lactams are 

antibiotics and I studied total synthesis of penicillin in my master class. Professor Bose called 

Professor Salomon and I was transferred in his group at the beginning of 1990. This was the way 

I became involved in beta lactam research which I am still continuing at an extremely rapid rate. 

This journey was very difficult to continue because of the poor funding situation in USA. 

However, I survived. Our research on beta lactams had received attention and popularity from 

scientific community as demonstrated by number of publications, presentations, citations and 

media exposures.  
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Background and Significance: 

Due to their medicinal activity and potential use as synthetic starting materials, synthesis and 

biological studiesof beta-lactams has been intensely investigated for more than 70 years. 

Considerable work has been performed by chemists and biologistto continue updating their 

findings about beta-lactam synthesis, based on either new or established methods, or on the 

modifications of pre-existing groups linked to this ring system.  

 

The first remarkably spectacular attempts to identify the active biochemicals found in 

antibacterial molds followed the discovery of penicillin antibiotics by Fleming. Then, 

identification of the chemical architecture by Hodgkin, and total synthesis by Chain, Heatley, 

and Florey, led to the successful preparation of penicillin antibiotics in 1940’s
1
. Since the 

discovery and synthesis of penicillin, many other families of β-lactam antibiotics had been 

realized
2
 and their extensive use worldwide continued to be a forefront line of action against 

infectious pathogens
3
. Notably, beta-lactams were found in other crucial applications to human, 

e. g. inhibitors of serine protease
4
 and acyl coenzyme A cholesterol transferases (ACAT)

5
.These 

types of molecules were used as starting materials for the preparation of various heterocycles of 

biological significance.
6
 For example, substituted hydroxy beta-lactams were used in the semi-

synthesis of Taxol and Taxotere.
7
Studies of human leukocyte elastase inhibitory mechanisms and 

the biological activity of this class of compounds were also available.
8
As a result of their 

significant practical use, the synthesis of new types of beta-lactams was the focus of active 

research.  A number of important strategies are available for the synthesis of the 2-azetidinone 

core ring present in all β-lactams(Staudinger cycloaddition reaction
9
, ester enolate-imine 

condensation
10
, hydroxamate approach

11
, alkene-isocyanate method

12
 and the alkyne-nitrone 

reaction (Kinugasa reaction).
13
 There are fascinating developments, such as catalytic 

asymmetric
14
 and polymer-supported

15
 synthesis of β-lactams. We and others are pursuing our 

work on the synthesis and biological evaluation of a number of novel anticancer and new beta-

lactams.
16, 17, 18, 19

 

 

Our Endeavor: 

We demonstrated the preparation of vinyl beta lactams for the first time with diaryl imines. The 

stereochemical results were highly unpredictable. These vinyl beta lactams were then converted 

to many other heterocycles by chemical manipulations: oxidation, reduction and rearrangement. 

An extension of this method with optically active imines was not possible. A number of methods 

with unsaturated acid chloride with optically active imines were attempted, but no beta lactams 

were obtained. The cause of the failure is still a mystery.  

 

Various optically active beta lactams were prepared with high level of asymmetric induction. In 

some instances, enantioselectivity and diasteroselectivity was not high and these reactions 

uncovered many theories of beta lactam formation reaction by Staudinger cycloaddition reaction. 

It was fascinating to observe formation of beta lactam with unpredictable and predictable 

absolute configuration. The number of chiral groups and their locations in the starting 

compounds was the key for the success of synthesizing enantiopure beta lactams. It was believed 

that addition of multiple chiral centers or groups may help to obtain beta lactams with high 

optical purity. However, this theory was turned out to be not true.  
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These optically active beta-lactams were used as the starting materials for the preparation of 

alkaloids, other beta lactams with additional complexity, amino acids and amino sugars with 

complete stereocontrol. Domestic microwave-induced reactions were found to have dramatic 

effects on stereochemistry and rate of the beta lactam formation reaction.
20, 21

The 

stereochemistry of many beta lactams was inverted using this techniqueand it was shown that 

this inversion was not due to epimerization to more stable products.  Higher activation energy 

chemical pathways that were difficult and practically impossible to complete with conventional 

heating (oil bath, steam bath, and mantle) was performed spontaneously with microwave 

irradiation because of a much more facile energy transfer process. In thermal reactions, heat is 

applied externally and it passes through the walls of the reaction vessels and solvent/reactants. 

However, microwave-induced processeshavea number of advantages because of coupling, 

heating, irradiation and molecular heating. Microwave coupling is the direct transfer of energy to 

substrates that results in instantaneous heating. Microwave heating is the direct energy transfer 

method to the reaction mixtures. Microwave irradiation is a form of non-ionizing radiation that 

transfers energy by interacting with polar molecules, solvents and reaction mixtures. Several 

mechanisms were proposed to explain the diasteroselectivity and enantioselectivity of beta 

lactam formation reaction. However, it appeared none was adequately explain the mechanism 

conclusively. This was not surprising to us because of our direct involvement in this area. It was 

understandable that structures of the starting materials, conditions of the experiments, nature of 

the reagents, and methods adopted can alter the stereochemical distribution and yield of the 

products drastically. Despite complexity, research in this area did not stop rather it took us to a 

different, but to a totally new direction of beta-lactam research.  

 

We conducted analyses of chrysene, phenanthrene and dihydrophenanthrenederivatives through 

an examination of their anticancer effects in vitro and in vivo. These antitumor agents were 

diamides in which a side chain is bound to the polycyclic system. During the course of this work, 

we anticipated that conformationally restricted compounds of these open chain molecules might 

increase the activity. Many examples of efficient conformationally restricted compounds were 

known. The hypothesis was that novel beta lactams can be synthesized that may demonstrate 

enhanced anticancer activity and low toxicity to healthy tissues. We synthesized numerous novel 

beta-lactams and showed that they possess promising antitumor activity in vitro and in vivo. An 

unprecedented observation on the stereochemistry of the resulting beta-lactams was observed. 

The mechanism of the process was explained and then this was further tuned by computer-

assisted DFT calculation.  The activity was superior to that of cisplatin in vitro in some 

examples. In addition, our studies of these compoundsdemonstrated a blockade of the G2/M 

checkpoint in cancer cell lines. Following this method, an extended series of carefully designed 

beta-lactam analogues, related to our lead compounds were synthesized in order to identify the 

structural and mechanistic correlates of antitumor properties. It appeared thatsome of these 

molecules have a potent and unique specific inhibition at the G2/M transition point in sensitive 

cancer cell lines. In addition, the compounds were monitored fortheir effect on a variety of 

enzymes related to DMA damage and repair. These were also investigated in the biochemical 

pharmacology studies to determine the mechanism ofaction. These included an overall 

assessment of the relative ability of lead beta-lactam to alter cellular apoptotic, cell cycle 

pathways and selected gene arrays designed to examine key elements of apoptosis. The same 

array was also be used to examine changes in genes known to be of importance in regulating the 
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cell cycle. It was highly interesting to realize that some beta-lactams exhibited anticancer 

activities against some tumor cell lines for which there are no treatment currently available.  

 

Suitable synthetic methods are essential for the preparation of new molecules. Carbohydrates are 

easily accessible substrates with multiple stereocenters.
22
 The configuration at the anomeric 

center, protective groups and nature of the ring systems in carbohydrates was manipulated by 

many researchers. Encouraging by these results, a number of carbohydrates were used as one of 

the key steps in the synthesis of optically active anticancer beta-lactams with diverse ratios. The 

protective group and the nature of the carbohydrates and amino acids were crucial in determining 

the enantioslectivity of the process.
23
 New results were obtained during hydrogenolysis, 

hydrogenation and ring annulation processes. It was clear anomeric center has role in the beta 

lactam formation reaction.
24
 Chiral beta lactams were also found to be highly selective anticancer 

agents that kill tumors cells at low micromolar concentration.  

 

Beta-lactams derived from this study was converted to other heterocycles and multicyclic 

molecules of biological significance using rearrangement or conceptually new reaction 

pathways. Numerous polycyclic beta lactams were prepared through cyclization strategies that 

involve ionic and radical intermediates. The methods not only extended the scope of research on 

beta lactams, but also it opens up a complete new era of this subject as well as to explore this 

chemistry for the synthesis of other heterocycleswhich are very difficult to prepare using the 

currently available methods.  

 

Conclusion: 

Overall, our research on beta lactams for the past 25 years has become very exciting and useful. 

This has uncovered numerous methods, reaction mechanism, synthesis and biological activity. 

However, we believe this is just the beginning considering many exciting results as described 

herein.  
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